146 research outputs found

    Practical Distance Functions for Path-Planning in Planar Domains

    Full text link
    Path planning is an important problem in robotics. One way to plan a path between two points x,yx,y within a (not necessarily simply-connected) planar domain Ω\Omega, is to define a non-negative distance function d(x,y)d(x,y) on Ω×Ω\Omega\times\Omega such that following the (descending) gradient of this distance function traces such a path. This presents two equally important challenges: A mathematical challenge -- to define dd such that d(x,y)d(x,y) has a single minimum for any fixed yy (and this is when x=yx=y), since a local minimum is in effect a "dead end", A computational challenge -- to define dd such that it may be computed efficiently. In this paper, given a description of Ω\Omega, we show how to assign coordinates to each point of Ω\Omega and define a family of distance functions between points using these coordinates, such that both the mathematical and the computational challenges are met. This is done using the concepts of \emph{harmonic measure} and \emph{ff-divergences}. In practice, path planning is done on a discrete network defined on a finite set of \emph{sites} sampled from Ω\Omega, so any method that works well on the continuous domain must be adapted so that it still works well on the discrete domain. Given a set of sites sampled from Ω\Omega, we show how to define a network connecting these sites such that a \emph{greedy routing} algorithm (which is the discrete equivalent of continuous gradient descent) based on the distance function mentioned above is guaranteed to generate a path in the network between any two such sites. In many cases, this network is close to a (desirable) planar graph, especially if the set of sites is dense

    Secure Data Hiding for Contact Tracing

    Full text link
    Contact tracing is an effective tool in controlling the spread of infectious diseases such as COVID-19. It involves digital monitoring and recording of physical proximity between people over time with a central and trusted authority, so that when one user reports infection, it is possible to identify all other users who have been in close proximity to that person during a relevant time period in the past and alert them. One way to achieve this involves recording on the server the locations, e.g. by reading and reporting the GPS coordinates of a smartphone, of all users over time. Despite its simplicity, privacy concerns have prevented widespread adoption of this method. Technology that would enable the "hiding" of data could go a long way towards alleviating privacy concerns and enable contact tracing at a very large scale. In this article we describe a general method to hide data. By hiding, we mean that instead of disclosing a data value x, we would disclose an "encoded" version of x, namely E(x), where E(x) is easy to compute but very difficult, from a computational point of view, to invert. We propose a general construction of such a function E and show that it guarantees perfect recall, namely, all individuals who have potentially been exposed to infection are alerted, at the price of an infinitesimal number of false alarms, namely, only a negligible number of individuals who have not actually been exposed will be wrongly informed that they have

    On affine rigidity

    Full text link
    We define the notion of affine rigidity of a hypergraph and prove a variety of fundamental results for this notion. First, we show that affine rigidity can be determined by the rank of a specific matrix which implies that affine rigidity is a generic property of the hypergraph.Then we prove that if a graph is is (d+1)(d+1)-vertex-connected, then it must be "generically neighborhood affinely rigid" in dd-dimensional space. This implies that if a graph is (d+1)(d+1)-vertex-connected then any generic framework of its squared graph must be universally rigid. Our results, and affine rigidity more generally, have natural applications in point registration and localization, as well as connections to manifold learning.Comment: Updated abstrac

    SUBPIXEL IMAGE REGISTRATION USING CIRCULAR FIDUCIALS

    Full text link

    Meshing Genus-1 Point Clouds Using Discrete One-Forms

    Get PDF
    We present an algorithm to mesh point clouds sampled from a closed manifold surface of genus 1. The method relies on a doubly periodic global parameterization of the point cloud to the plane, so no segmentation of the point cloud is required. Based on some recent techniques for parameterizing higher genus meshes, when some mild conditions on the sampling density are satisfied, the algorithm generates a closed toroidal manifold which interpolates the input and is geometrically similar to the sampled surface.Engineering and Applied Science

    Path Planning with Divergence-Based Distance Functions

    Full text link
    Distance functions between points in a domain are sometimes used to automatically plan a gradient-descent path towards a given target point in the domain, avoiding obstacles that may be present. A key requirement from such distance functions is the absence of spurious local minima, which may foil such an approach, and this has led to the common use of harmonic potential functions. Based on the planar Laplace operator, the potential function guarantees the absence of spurious minima, but is well known to be slow to numerically compute and prone to numerical precision issues. To alleviate the first of these problems, we propose a family of novel divergence distances. These are based on f-divergence of the Poisson kernel of the domain. We define the divergence distances and compare them to the harmonic potential function and other related distance functions. Our first result is theoretical: We show that the family of divergence distances are equivalent to the harmonic potential function on simply-connected domains, namely generate paths which are identical to those generated by the potential function. The proof is based on the concept of conformal invariance. Our other results are more practical and relate to two special cases of divergence distances, one based on the Kullback-Leibler divergence and one based on the total variation divergence. We show that using divergence distances instead of the potential function and other distances has a significant computational advantage, as, following a pre-processing stage, they may be computed up to an order of magnitude faster than the others when taking advantage of certain sparsity properties of the Poisson kernel. Furthermore, the computation is "embarrassingly parallel", so may be implemented on a GPU with up to three orders of magnitude speedup
    • …
    corecore